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In induced matter theory, Einstein’s four-dimensional theory with matter is normally embedded in higher-

dimensional vacuum general relativity; as a result, the properties of matter have a geometrical origin. In this

paper we investigate Einstein-Yang-Mills extensions of induced matter theory, in which the higher-dimensional vac-

uum field equations of Einstein-Yang-Mills type reduce to the field equations of Einstein’s four-dimensional theory

with matter. Such extensions allow much richer forms for the induced matter than in the usual theory. We study

isotropic and spatially homogeneous cosmological models in a variety of higher-dimensional theories containing

Abelian and non-Abelian gauge fields. In particular, we study a five-dimensional theory containing an Abelian

Maxwell field, a non-Abelian Yang-Mills model in six and N dimensions and a five-dimensional supergravity theory.

We investigate a number of exact solutions of the corresponding field equations and study the asymptotic properties

of more general solutions using qualitative techniques. The resulting models give rise to perfect fluid induced matter

with a wide variety of equations of state. Finally, we investigate the introduction of (three-dimensional) spatial

anisotropy into the higher-dimensional geometry, whereby the Einstein-Yang-Mills theories give rise to induced

matter with non-perfect fluid contributions.
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@TSQ IZOTROPNYE PROSTRANSTWENNO ODNORODNYE KOSMOLOGIˆESKIE MODELI W RAZLIˆNYH MNOGOMERNYH TEORIQH S

ABELEWYMI I NEABELEWYMI KALIBROWOˆNYMI POLQMI. w ˆASTNOSTI, IZUˆAETSQ 5-MERNAQ TEORIQ S ABELEWYM MAKS-

WELLOWYM POLEM, NEABELEWA MODELX qNGA-mILLSA W 6 I N IZMERENIQH I 5-MERNAQ SUPERGRAWITACIQ. iSSLEDU-

ETSQ RQD TOˆNYH RE[ENIJ SOOTWETSTWU@]IH URAWNENIJ POLQ; W BOLEE OB]EM SLUˆAE KAˆESTWENNYMI METODAMI

ISSLEDU@TSQ ASIMPTOTIˆESKIE SWOJSTWA RE[ENIJ. pOLUˆENNYE MODELI SODERVAT INDUCIROWANNU@ IDEALXNU@

VIDKOSTX S [IROKIM SPEKTROM URAWNENIJ SOSTOQNIQ. kROME TOGO, RASSMATRIWAETSQ WWEDENIE (TREHMERNOJ)

PROSTRANSTWENNOJ ANIZOTROPII W MNOGOMERNU@ GEOMETRI@; W “TOM SLUˆAE TEORII —JN[TEJNA-qNGA-mILLSA

PRIWODQT K INDUCIROWANI@ NEIDEALXNOJ VIDKOSTI.

1. Introduction

Higher dimensions are believed to play a significant
rôle in the early universe and there have been many re-
cent attempts to construct a unified field theory based
on the idea of a multidimensional spacetime [1, 2,
3]. There are several mechanisms known which in-
corporate a natural splitting of the physical and inter-
nal (higher) dimensions, including the Freund-Rubin

1e-mail: hossein@mscs.dal.ca
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3e-mail: aac@mscs.dal.ca

mechanism [4], the Casimir effect associated with mat-
ter fields or zero-point gravitational energies [5], and
the effect of higher-derivative terms in the gravita-
tional action [6, 7]. Theories of this type date back
to the original Kaluza-Klein theory [8, 9, 10] in which
the extra degrees of freedom in a five-dimensional the-
ory were associated with an electromagnetic poten-
tial and the resulting Einstein equations mimicked the
Einstein-Maxwell equations in four dimensions. Mod-
ern theories of this type include supergravity theory
[11, 12] and superstrings [13, 14].
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In higher-dimensional theories (e.g., unifications
of gravity with weak and strong interactions, as well
as electromagnetism), when coordinates are chosen
in such a way that the off-diagonal metric compo-
nents are associated with gauge fields, an isometry
group of internal compact manifolds generates a non-
Abelian group of gauge transformations which lead to
an effective four-dimensional action for Einstein grav-
ity plus non-Abelian gauge fields. Of course, finding
solutions of the resulting field equations of these the-
ories, in particular in the spatially homogeneous and
isotropic case, is of interest in its own right. How-
ever, we shall also be interested in induced matter
theories [15, 16, 17], in which the properties of matter
are contained in a purely geometric Kaluza-Klein-type
extension of general relativity and hence the matter is
completely geometric in nature. Normally, the four-
dimensional properties of matter are investigated by
assuming that the higher-dimensional vacuum equa-
tions of general relativity reduce to Einstein’s four-
dimensional theory with matter [15, 16], although
higher-dimensional generalized Lagrangian extensions
of general relativity (with the addition of quadratic
curvature invariants to the Einstein-Hilbert action)
have also been studied [17]. Here we shall investi-
gate whether Einstein’s four-dimensional theory with
matter can be embedded in a higher-dimensional the-
ory of Yang-Mills-type, i.e., whether the correct field
equations are the vacuum Einstein-Yang-Mills (EYM)
equations. The idea is that the extra terms present
in the higher-dimensional field equations may play the
rôle of the matter terms that appear on the right-hand
sides of the embedded four-dimensional Einstein field
equations. The notion that the properties of matter
might have a geometric origin has been developed by
many authors [18, 19, 20] and is in the spirit of the
original Kaluza-Klein theory [8, 9, 10].

We shall consider the D = 4+N dimensional met-
ric in the form

ds2 = gabdx
adxb = gαβdx

αdxβ + gABdyAdyB, (1)

where ds2
4 = gαβdx

αdxβ is given by the Friedmann-
Robertson-Walker (FRW) form,

ds2
F = −dt2+H2(t)

[
dr2 + r2

(
dθ2 + sin2θdφ2

)(
1 + 1

4kr
2
)

]
,(2)

where k is the normalized (i.e., k = 0,±1) curvature
constant. The matter source is assumed to be a perfect
fluid with the energy-momentum tensor

Tαβ = (µ+ p)uαuβ + pgαβ , (3)

where µ and p are the energy density and pres-
sure, respectively, and uα is the (comoving) fluid

four-velocity. The four-dimensional Einstein equations
(with matter) then yield

8πGµ =
3
H2

(k + Ḣ2), (4a)

8πGp = −2Ḧ
H

− 1
H2

(k + Ḣ2). (4b)

We shall be primarily concerned with cosmological
models containing a perfect fluid. The phenomenolog-
ical physical quantities µ and p are to be interpreted
in terms of more fundamental geometric quantities.

As an illustration, consider the five-dimensional
metric given by

ds2 = ds2
F + L2(t)dy2, (5)

where ds2
F is the four-dimensional FRW line element

given by (2) with k = 0. The five-dimensional Einstein
vacuum equations then yield [16]

8πGµ = 3
Ḣ2

H2
= −3Ḣ

H

L̇

L
, (6)

8πGp = −2Ḧ
H

− Ḣ2

H2
=

L̈

L
+ 2

Ḣ

H

L̇

L
, (7)

with the familiar solution

H = t1/2, L = t−1/2, (8)
8πG
3

µ = 8πGp =
1
4t2

, (9)

which represents the familiar flat FRW radiation model.
In higher dimensions (N > 1) with flat spatial cur-
vature, the familiar generalized Kasner models are
derived [17].

Here we wish to examine cosmological models in
which Maxwellian and Yang-Mills terms are added to
the standard Einstein Hilbert action

S =
∫

dDV
−R

4κ2
. (10)

In particular, in Sec. 2.1 we augment (10) in five di-
mensions with an Abelian U(1) field. Next we con-
sider an SO(3) model in D dimensions in Sec. 2.2.
In Sec. 2.3 we derive the induced matter from a five-
dimensional theory of supergravity. Sec. 3.1 gives an
example of how one could generalize these examples
by considering anisotropy in the three-space and Sec. 4
is reserved for concluding remarks.

2. Einstein-Yang-Mills theories

2.1. Abelian gauge field

We begin by examining five-dimensional Einstein grav-
ity augmented by a Maxwellian field, described by the
action

S =
∫

d5V

{
− (R+ 2Λ)

4κ2
− 1
4
FabF

ab

}
, (11)
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where κ2 = 4π(5)G and Fab is the field tensor of a
U(1) Abelian guage field. This model has been ex-
tensively studied in [21] and [22], in which the Rubin-
Freund ansatz

F =
QL

4πH3
dt ∧ dy, (12)

has been assumed and where the metric is given by
(5).

By varying the action (11) we obtain the following
relevant field equations:

L̈

L
+ 3

Ḧ

H
=
2Λ
3

−
(5)GQ2

3πH6
, (13a)

L̈

L
+ 3

ḢL̇

HL
=
2Λ
3

−
(5)GQ2

3πH6
, (13b)

Ḧ

H
+

ḢL̇

HL
+
2(Ḣ2 + k)

H2
=
2Λ
3
+

(5)GQ2

6πH6
, (13c)

where a dot denotes d/dt . In [21] these field equations
were used to describe an N -dimensional compact in-
ternal space with two additional dimensions: one time-
like and one spacelike. This particular example then
implies that k > 1 in the above field equations. How-
ever, since the internal space is spacelike, one could
equally view this as describing a space-time with one
timelike dimension, three spacelike dimensions (by set-
ting n = 3) and one internal dimension, and therefore
k can be 0 or ±1.

A solution to (13) for H and L is given by

Ḣ2 = L2 =

√
2(5)GM

H2

√
H2 − Q2

24πM

+
2ΛH6

24(5)GM
− kH4

2(5)GM
(14)

where M is an integration constant. When Λ =
k = 0, and defining α and β by α =

√
2 (5)GM ,

β2 = Q2[24πM ]−1 , Eq. (14) can be further integrated
to yield

αt = 1
2β

2 cosh−1(H/β) + 1
2H

√
H2 − β2, (15)

although it is not necessary to determine H in terms
of t in order to determine the forms for µ and p ,
which are given by

8πGµ =
6 (5)GM

H4
−

(5)GQ2

4πH6
, (16)

8πGp =
2 (5)GM

H4
−

(5)GQ2

4πH6
. (17)

Hence, we obtain the equation of state

(µ− 3p)2 = ω2(µ− p)3 (18)

where

ω2 ≡ GQ4

32π(5)GM3
.

The late-time equation of state for these solutions
is that of radiation. This is apparent from (15), since
for large H we obtain H2 ≈ 2αt , which leads to
8πGp ≈ 83

π Gµ ≈ 1
4 t

−2 . The corresponding line ele-
ment is then

ds2 ≈ −dt2 + 2αt(dr2 + r2dΩ2) +
α

2t
dy2,

whose four-dimensional component is the Tolman line
element [23].

2.2. Yang-Mills fields in higher dimensions

We now turn our attention to non-Abelian fields cou-
pled to higher-dimensional Einstein gravity. As an ex-
plicit example, we shall consider an SO(3) Yang-Mills
field coupled to gravity via the six-dimensional action
[14]

S =
∫

d6V

{
− (R+ 2Λ)

4κ2
− F

(a)
αβ F (a)αβ

}
(19)

(where now κ2 = 4π(6)G), with the metric described
by the line interval

ds2 = ds2
F + L2(t)

[
dξ2 + sin2(ξ)dζ2

]
where y1 = ξ and y2 = ζ are the two extra coor-
dinates. We also assume that all components of the
gauge field are zero except

A
(a)
ξ = − e−1 [− sin ζ, cos ζ, 0] ,

A
(a)
ζ = − e−1 sin ξ [− cos ζ cos ξ, sin ζ cos ξ, sin ξ] ,

(20)

where e is the gauge field strength (see [14]).
The relevant field equations obtained from this ac-

tion using the above ansätze for the metric and gauge
field, are

3
Ḧ

H
+ 2

L̈

L
=
1
2
Λ− α

L4
, (21a)

Ḧ

H
+ 2

ḢL̇

HL
+ 2

Ḣ2

H2
+ 2

k

H2
=
1
2
Λ− α

L4
, (21b)

L̈

L
+ 3

ḢL̇

HL
+

L2

L̇2
+

K

L2
=
1
2
Λ +

3α
L4

, (21c)

3Ḣ2

H2
+
3k
H2

+ 6
ḢL̇

HL
+

L̇2

L2
+

K

L2
= Λ+

2α
L4

(21d)

where α = 2π (6)G/ e2 . Cremmer and Scherk [14, 24]
presented a six-dimensional Yang-Mills solution simi-
lar to the ’t Hooft magnetic monopole [25, 26] where
L = L0 a constant and k = 0 (see also [27]). Their
solution is a fixed point of the system (21) for N = 2,
K = 1 and k = 0 (see below).

These field equations can be generalized to the (4+
N)-dimensional case in a straightforward manner. In
particular, we can exploit the results of Wiltshire [22]
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who studied an Abelian gauge field (using the Rubin-
Freund ansatz) coupled to (4+N)-dimensional gravity
using the line interval

ds2 = ds2
F + L2(t)g̃IJdy

IdyJ .

Here the“internal” space is an N -dimensional Einstein
space of constant curvature K , described by the met-
ric g̃IJ ; i.e., the Ricci tensor constructed from g̃IJ is
defined by RIJ = (N − 1)Kg̃IJ .

The field equations in [22] are given by

3
Ḧ

H
+N

L̈

L
=

2Λ
N + 2

− α(N − 1)
L2N

, (22a)

Ḧ

H
+N

ḢL̇

HL
+

2
H2

(
Ḣ2 + k

)
=

2Λ
N + 2

− α(N − 1)
L2N

,

(22b)

L̈

L
+ 3

ḢL̇

HL
+

N − 1
L2

(
L̇2 +K

)
=

2Λ
N + 2

+
3α
L2N

,

(22c)

6

(
Ḣ2 + k

H2

)
+ 6N

ḢL̇

HL
+N(N − 1)

(
L̇2 +K

L2

)

= 2Λ +
(N + 2)α

L2N
. (22d)

Our immediate focus here is with the case of an
SO(3) non-Abelian guage field in six dimensions.
However, we note that the results pertaining to this
particular case follow immediately from the solutions
of (22) by setting N = 2 (for more details about
the SO(3) model see [28]). Attempts to solve (22)
analytically for the most general solution may prove
futile. However, the behaviour of the system for all
times may be obtained through qualitative analysis,
as was the method used by Wiltshire. In his work,
he completed a full phase-space analysis of equations
(22), including the use of a Poincaré transformation to
compactify the space in order to evaluate the system’s
fixed points at infinity (in terms of the dynamical vari-
ables used). We only highlight the solutions obtained
in Wiltshire’s work and refer the reader to his paper
for full details of the analysis. Specifically, we will
describe the non-saddle fixed points of (22), present
the “induced” equation of state associated with each
of these fixed points, and then briefly summarize the
behaviour of the solutions.

The field equations (22) admit up to seven non-
saddle fixed points, although some of these fixed points
are described by identical solutions. The fixed points
forming the first set are the only ones at infinity and
are represented by the generalized Kasner solution [17,
22, 29, 30]

H = H0 t
m± , L = L0 t

n± , (23)

where

m± =
1

3 +N

{
1± 1

3

√
3N2 + 6N

}
>
< 0, (24)

n± =
1

3 +N

{
1∓ 1

N

√
3N2 + 6N

}
<
> 0, (25)

where two of the fixed points have (m+, n+) as a so-
lution and the other two have (m−, n−) as a solution.
The latter two points are saddle points and so solu-
tions asymptoting towards or away from these are of
measure zero. One of the m+ and n+ fixed points is
an attracting node whilst the other is a repelling node.
Here, and throughout the rest of the paper, when the
Kasner solution is mentioned, it will be assumed that
we are referring to the m+ and n+ solution unless
otherwise stated.

For both solutions (m± ,n± ), the induced matter
has the equation of state (see [17])

p = σ±µ =

{
2N + 3∓√

3N2 + 6N
3±√

3N2 + 6N

}
µ. (26)

For the (m+ ,n+ ) solution, σ+ ranges from 1
3 for N =

1 to 2
3 (
√
3− 1) for N → ∞ .

The next two fixed points are obtained for k =
K = α = 0 and Λ > 0, and are represented by the
solutions

H = H0 eγt, L = L0 eγt, (27)

where

γ = ±
√

2Λ
(N + 2)(N + 3)

. (28)

The growing mode solution is an attracting node and
hence a future attractor, whilst the decaying mode so-
lution is a repelling node (past attractor). The induced
energy density and pressure for this solution are given
by

8πGµ = −8πGp = 3
2Λ

(N + 2)(N + 3)
. (29)

This equation of state corresponds to that of a false
vacuum and so we have de-Sitter-like solutions. The
next set of fixed points is another set of de-Sitter-like
solutions for k = 0, K = 1, Λ > 0. Although the
number of fixed points is either two or four depending
on the value of Λ, they all correspond to the solution

H = H0 e±δt, L = L0. (30)

This is the form of the solution obtained by Cremmer
and Scherk [14]. The integration constant L0 is not
arbitrary, but depends on the values of Λ and α . In
all these cases, the equation of state is again p = −µ .
If α = 0, then there are only two solutions: δ2 = Λ/6
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with L−2
0 = 1

2Λ. When α �= 0, finding δ and L0 in a
closed form may be quite difficult for arbitrary N . To
illustrate, for these solutions the first two equations of
(22) both yield (N �= 1)

1
L2N

0

=
2Λ− 4(N + 2)δ2

α(N − 1)(N + 2)
,

which isolates the value for L0 . Using this expression,
one then obtains from either of the last two equations
of (22)

α
[
2Λ− 9δ2

]N
=
(N − 1)2N−1

(N + 2)
[
2Λ− 3(N + 2)δ2

]
,

which is the condition found in [22]. Unfortunately,
one cannot analytically solve this for arbitrary N .
However, to demonstrate that this does lead to ei-
ther two or four solutions, we shall consider the case
N = 2. We find that Λ is bounded by Λ ≤ (6α)−1

for any real solution to exist, so we write Λ = z/(6α)
where z has the range [0, 1]. The solution for δ and
L0 is hence

δ2
± =

2z − 1±√
1− z

54α
, (31)

1
L4

0

=
1− 1

2z ∓
√
1− z

18α2
. (32)

It is apparent that there is no real solution for z > 1
(Λ > (6α)−1 ). For Λ ≥ 1/(8α) we find that the δ+
solution is an attracting node for δ > 0 and a repelling
node for δ < 0, and the δ− solutions are saddle points
of the system. For Λ < 1/(8α), the δ2

− solutions are
not real and so there are only two fixed points (δ2

+ )
which are saddle points.

The final fixed point is given by the solution k =
K = α = Λ = L̇ = Ḣ = 0, which is just a D -
dimensional Minkowski space-time. This fixed point
is an attracting node.

From the dynamical systems analysis [22], or from
a direct perturbation analysis [28], we find the follow-
ing evolution of this system. With the exception of
solutions of measure zero, all solutions asymptote into
the past to the Kasner solution, or to the decaying
de Sitter solution of (27), or to the decaying de Sitter
solution for δ− of (31) (for the correct values of Λ).
The future behaviour of the solutions is that they ei-
ther recollapse to the Kasner singularity (i.e.,the time
reverse solution of (23) with m+ and n+ ), or they
asymptote towards the growing de Sitter solution (27),
or to the growing de Sitter solution of (31) for δ− , or
to a Minkowski spacetime. .

Finally, Wiltshire [22] finds three exact solutions
which represent separatrices in the phase portraits
constructed in his analysis. The first is the Kasner
solution (23) when k = K = α = Λ = 0. The in-
duced matter is characterized by (26). The next two

solutions occur for k = K = α = 0. The scale factors
H and L for the first of these solution, which were
obtained for Λ < 0, are

H = H0

∣∣sin(12γt)∣∣m± ∣∣cos( 12γt)∣∣ 2
N+3−m±

, (33)

L = L0

∣∣sin(12γt)∣∣n± ∣∣cos( 12γt)∣∣ 2
N+3−n± (34)

where

γ2 = 2
[
N + 3
N + 2

]
|Λ| .

The corresponding energy density and pressure are,
respectively,

8πGµ =
|Λ|

2(N + 2)

{
(jµ ± l) cot2( 12γt)

+ (jµ ∓ l) tan2( 12γt) + 2(N − 1)
}
, (35)

8πGp =
|Λ|

6(N + 2)

{
(jp ± l) cot2( 12γt)

+ (jp ∓ l) tan2( 12γt)− 6(N − 3)
}
, (36)

where

l =
2
√
3N2 + 6N
N + 3

,

jµ =
N2 + 2N + 3

N + 3
,

jp =
9− 3N2

N + 3
.

These solutions initially expand from a Kasner singu-
larity and then recollapse back to a Kasner singularity
(see [22]) and so both early time (t → 0+ ) and late
time (γt → π ) solutions will have the Kasner equation
of state (26).

The last of the separatrix solutions has Λ > 0, and
the scale factors are given by

H = H0

∣∣sinh(12γt)∣∣m± ∣∣cosh( 12γt)∣∣ 2
N+3−m±

, (37)

L = L0

∣∣sinh(12γt)∣∣n± ∣∣cosh( 12γt)∣∣ 2
N+3−n±

. (38)

The corresponding energy density and pressure are,
respectively,

8πGµ =
|Λ|

2(N + 2)

{
(jµ ± l) coth2( 12γt)

+ (jµ ∓ l) tanh2( 12γt)− 2(N − 1)
}
, (39)

8πGp =
|Λ|

6(N + 2)

{
(jp ± l) coth2( 12γt)

+ (jp ∓ l) tanh2( 12γt) + 6(N − 3)
}
. (40)

For early times, t → 0+ , the equation of state ap-
proaches the Kasner equation of state, whereas at late
times, γt >> 1, the equation of state approaches the
false vacuum equation (29).
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2.3. Supergravity

In this section, we study an example from supergravity
in which the fermionic fields are zero, the Maxwellian
potential is given by Aλ = (0, 0, 0, 0, ψ) and the five-
dimensional line interval is given by

ds2 = −dt2 +H2(t)
dr2 + r2dΩ2

[1 + 1
4kr

2]2
+ L2(t)dy2

= −H6(η)dη2 +H2(η)dΣ2
3 + L2(η)dy2 (41)

where the conformal time coordinate is defined by
dt ≡ H3dη . As given in [31, 32], all quantities con-
sidered here depend only on the four-dimensional “ex-
ternal” coordinates and so the five-dimensional La-
grangian can be expressed as a four-dimensional La-
grangian coupled to two scalar fields, ψ and L2 = gyy ,
namely,

S =
∫

d4V

{
−LR

4κ2
+
2
L
DλψD

λψ

}
(42)

where Dλ is the gauge-covariant derivative corre-
sponding to Aλ .

The resulting field equations,

Ḧ

H
+

Ḣ2

H2
+

k

H2
=

ψ̇2

4L2
, (43a)

Ḣ2

H2
+

k

H2
+

ḢL̇

HL
=

ψ̇2

4L2
, (43b)

L̈+ 3
Ḣ

H
L̇ = − ψ̇2

L2
, (43c)

ψ̈ + 3
Ḣ

H
ψ̇ =

L̇

L
ψ̇, (43d)

were solved in [31, 32]; the solution, up to a translation
in η , is given by

H =
H0√

1− q cos(aη)
, (44)

L = −L0 sin(aη), (45)

ψ = −L0 cos(aη), (46)

where H0 , L0 and a are integration constants and

q ≡
√
1− 4kH4

0/a
2. (47)

To ensure that t is monotonic in η , H is required
to be positive, as is the case when 0 < q < 1. It is
apparent that H oscillates all the time (and therefore
µ and p will oscillate all the time). When q ≥ 1, t
and H diverge for η = 1/a cos−1(1/q), as pointed out
in [31, 32]. Except for the trivial case H0 = 0, H
never vanishes and so the four-dimensional space-time
can be considered to be singularity-free.

The energy density and pressure of the induced
matter are given by, respectively,

8πGµ =
3
4
a2

H6
0

{1− q cos(aη)}

× {
(1− q) + q2 sin2(aη)

}
, (48)

8πGp =
a2

H6
0

{1− q cos(aη)}

×
{
q cos(aη)[1− q cos(aη)]

− 1
4
q2 sin2(aη)− 1

4
(1− q)

}
. (49)

We define p̄ = 8πGpH6
0a

−2 and µ̄ = 8πGµH6
0a

−2 ,
and combine (48) and (49) to obtain the equation of
state{

27(µ̄− p̄)5

(µ̄+ 3p̄)− 3C(µ̄− p̄)
+ C(µ̄+ 3p̄)

− 12µ̄(µ̄− p̄)2

(µ̄+ 3p̄)− 3C(µ̄− p̄)

}
(µ̄− p̄) = 0, (50)

where C = 1− q + q2 > 0.
To help elucidate the nature of this equation of

state, we have provided several figures of p , µ and
p/µ as a function of η for various values of q . In the
calculations used to produce the figures, we defined
t = 0 for η = π/a . In the plots for q < 1, the value of
µ and p repeat themselves every 2π/a and so we only
plot them from η = 0 to η = 2π/a . For q ≥ 1, we only
plot µ and p for the range of η which corresponds to
t ∈ (−∞,∞) (which are marked on the plots by the
dashed lines). For these values of q , the equation of
state asymptotes into the past and future towards the
relation p = − 1

3µ .
Fig. 1 gives the plots of the energy density and

pressure for the induced matter derived in the super-
gravity model for the following values of the parameter
q (defined by Eq. (47)): (a) q < 1/4, (b) q = 1/4, (c)
q = 1/2, (d) q = 3/4, (e) q > 1.

3. Generalizations

From these examples it is quite apparent that there are
many different ways of obtaining equations of state dif-
ferent from radiation in the context of induced matter
theory. Indeed, there are more examples and theo-
ries found in the literature that may be used in this
manner. In the context of Einstein-Maxwell (EM) the-
ories, Gleiser et al. [33] have studied ten- and eleven-
dimensional space-times, and Freund and Rubin [4]
have also found solutions in the eleven-dimensional
case in which seven of the eleven dimensions com-
pactify. Gibbons and Wiltshire [21] studied arbitrary
D -dimensional spacetimes containing an EM gauge
field. Similarly, Fabris [34] showed that in order to
obtain a traceless electromagnetic stress-energy tensor
in D = 4 +N dimensions, the electromagnetic poten-
tial is required to have a 1

2 (N −2)-form, and hence he
considered even-dimensional cosmologies. Fabris [35]
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2

0

0 2
aη/π

µ

p p/µ

Figure 1(a): q < 1/4

2

0

0 2
aη/π

µ

p

p/µ

Figure 1(b): q = 1/4

also studied a D = 6 anisotropic model and a D = 8
model which contained an anti-de-Sitter space-time as
a solution.

In terms of Einstein-Yang-Mills higher-dimensional
theories, the literature is extensive. Kubyshin et al.
[36] studied higher-dimensional cosmologies containing
SU(5) and SU(2) × U(1) gauge fields with a static
compact “internal” space, as well as anisotropic in-
ternal spaces. Clement [37] studied a six-dimensional
SO(3) EYM-Higgs model, examining the stability of

20 2

0

aη/π

µ

p

p/µ

Figure 1(c): q = 1/2

2

0

0 2

0

aη/π

4µ

p

p/µ

Figure 1(d): q = 3/4

the static solutions. Bertolami et al. [38] considered
D -dimensional space-times in the context of compact-
ification. Luciani [39] extended the work of Cremmer
and Scherk [14, 24] by considering several symmetry
groups [for example, a (4 + 2PQ)-dimensional space-
time with the group SU(P + Q) and the subgroup
SU(P ) × SU(Q) × U(1), a (4 + 1

2 (N − 1)(N + 2))-
dimensional spacetime with the group SU(N) and
the subgroup SO(N), a (4 + N(N − 1))-dimensional
space-time with the group SO(2N) and the subgroup
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0

0 2
aη/π

µ

p p/µ

p/µ

Figure 1(e): q > 1

U(N), and a (4 + PQ)-dimensional space-time with
the group SO(P + Q) and the subgroup SO(P ) ×
SO(Q)].

There are several examples of supergravity theories
that have been studied. Five-dimensional supergravity
has been studied by Balbinot et al. [31, 32] and by Pi-
mentel [40] (who considered a Bianchi I model for the
four-dimensional part of the space-time). In addition,
Duruisseau and Fabris [41] studied five-dimensional
supergravity with Gauss-Bonnet terms in the action.
Ten-dimensional supergravity has also been studied
by Gleiser and Stein-Schabes [42], who obtained a de
Sitter-type solution as a late time solution.

Of course, there are other approaches one could
consider. For instance, one could also propose a gen-
eralized Einstein theory of gravity in the context of
Lovelock theory [43, 17]. Another example could be
to include anisotropy into any of the aforementioned
works. In all examples studied in Sec. 2 the induced
fluids were perfect; by introducing anisotropy into the
three-space we would expect inducing anisotropies in
the pressure and hence dissipative terms in the energy-
momentum tensor. In general, the energy-momentum
tensor would be then modified from (3) to

Tαβ = (µ+ p)uαuβ + pgαβ + παβ + qαuβ + qβuα (51)

where παβ is the anisotropic pressure tensor and qα

is the heat conduction vector, such that πα
α = uαπ

α
β =

qαuα = 0 [44]. The variable p is now the pressure
averaged over all three directions and the pressure in
each direction is then defined as pi = p + πi

i (for i =
1, 2, 3 with no summation implied).

3.1. Anisotropic generalizations

As an illustration, we consider anisotropy in the su-
pergravity model of Sec. 2.3 which has been previously
studied in [31]. The cylindrically symmetric metric is
given by

ds2 = −A2B4dη2 +A2dx2

B2(dy2 + dz2) + L2(dx5)2 (52)

where now the conformal time, η , is defined by dt =
AB2dη , with A = A(η), B = B(η) and L = L(η).
The field equations then give rise to the following set
of ordinary differential equations (see [31] for details):

1
2
ψ′

L2
=
2A′

A

B′

B
+
(B′)2

B2
+

[
A′

A
+
2B′

B

]
L′

L
, (53a)

1
2
ψ′

L2
= −2B

′′

B
− L′′

L
+
2B′

B

A′

A
+
3 (B′)2

B2
+

L′

L

A′

A
,

(53b)
1
2
ψ′

L2
= −A′′

A
− B′′

B
− L′′

L

+
(A′)2

A2
+
2 (B′)2

B2
+

L′

L

B′

B
, (53c)

1
2
ψ′

L2

A′′

A
+
2B′′

B
− 2A′

A

B′

B
− 3 (B′)2

B2
− (A′)2

A2
, (53d)

ψ′′ − L′

L
ψ′ = 0. (53e)

A solution of these equations, up to a translation
in η , is then given by [31]

A = A0

(
tan

aη

2

)b/a 1√
sin(aη)

,

B = B0

(
tan

aη

2

)c/a 1√
sin(aη)

,

L = L0 sin(aη),

ψ = −L0 cos(aη), (54)

where the integration constants a , b and c are con-
strained by 2bc+c2 = 3a2/4. Evidently, when b = c =
±a/2, the solutions found in Sec. 2.3 are recovered.

To calculate the induced matter, we define the co-
moving fluid four-velocity to be

uα =
δα
t

A(η)B2(η)
,

which satisfies uαuα = −1. From (51) we then obtain

8πGµ =
1

4A2
0B

4
0

[
tan

(
1
2aη

)]−2 b+2 c
a sin(aη)

× [2 c− a cos(aη)] sin(aη)

× [4 b+ 2 c− 3 a cos(aη)], (55)

8πGp =
a

12A2
0B

4
0

[
tan

(
1
2aη

)]−2 b+2 c
a

× [
9a cos2(aη)− 4(b+ 2c) cos(aη)− 3a] sin(aη), (56)
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8πGπx
x =

−2a
3A2

0B
4
0

[
tan

(
1
2aη

)]−2 b+2 c
a [b− c]

× sin(aη) cos(aη), (57)

πy
y = πz

z = − 1
2π

x
x . (58)

Notice that there are no heat conduction terms in this
model. It may be verified that πα

β = −λ(η)σα
β , where

σα
β is the shear tensor defined from uα [44] and λ is
the viscosity coefficient of the fluid given by

λ(η) = −a cos(aη)
√
sin(aη)

A0B2
0

[
tan

(
1
2aη

)]− b+2c
a . (59)

We note that the above quantities either diverge or
vanish at η = 0 and η = π/a , but which possibility
occurs depends on the values of b and c that can
be positive or negative. One finds by iteration that
the original time variable, defined by t =

∫
AB2dη ,

is monotonic in η in the interval [0, π/a] and so we
will consider these “endpoints” as early-time and late-
time limits. Taking the ratio of p/µ and using the
constraint 2bc+ c2 = 3a2/4, we obtain

p

µ
=

a2cos(aη) + 2ac[1− 3 cos2(aη)] + 4c2 cos(aη)
3a[a− 2c cos(aη)][a cos(aη)− 2c] .

For early-time (η → 0+ ) behaviour and for late-time
behaviour (η → π/a) we find that p → µ/(3a) and
hence the constant a plays an important rôle in deter-
mining the equation of state.

4. Conclusion

In this paper our main goal has been to consider the
induced matter theory of Wesson [15] in the context
of higher-dimensional Einstein-Yang-Mills cosmologi-
cal models. We have studied Abelian and non-Abelian
gauge fields coupled with gravity in 4 + 1 and 4 +N
dimensions, respectively. These gauge fields do not
arise from the metric (e.g., Aµ ∝ g5µ ) as happens in
the traditional Kaluza-Klein theory. In the case of an
Abelian Maxwell field the induced matter is a perfect
fluid with the equation of state (18). At late times the
equation of state for this form of matter asymptotes
towards that of radiation.

In the case of the non-Abelian Yang-Mills model,
we described the fixed-point solutions of the field equa-
tions consisting of an autonomous system of ordinary
differential equations, and we discussed the induced
equation of state associated with these fixed-point so-
lutions. We also gave the form of the solutions ex-
plicitly for two of the fixed points whose existence
was simply noted in Wiltshire’s work [22]. The gen-
eral behaviour of the solutions is that they evolved
either from an anti-de-Sitter spacetime or from a Kas-
ner singularity. The solutions asymptote either to-

wards another Kasner singularity, or towards a de Sit-
ter inflationary phase, or towards a flat D -dimensional
Minkowski vacuum at late times. The induced equa-
tion of state for these fixed points is linear but depends
on the number of dimensions considered.

We also investigated the induced matter theory
in the context of a 5-dimensional supergravity the-
ory. The induced matter obtained is somewhat exotic
but still of a perfect fluid form. For suitable values
of the parameters we found that there are no initial
singularities in the four-dimensional spacetime, which
exhibits a periodic nature. Consequently, there are
no early/late time behaviours for the induced matter.
Instead, the energy density and the pressure have an
oscillatory behaviour, the latter remaining mostly neg-
ative. For other values of the model parameters, there
are indeed singularities and the matter asymptotes to
p = − 1

3µ for early and late times. In these cases there
are times at which the energy density actually becomes
negative.

Finally, by introducing anisotropy into the four-
dimensional part of the spacetime, dissipation terms
are added to the induced matter. Consequently, an-
isotropic pressures are introduced which are propor-
tional to the fluid’s shear. The corresponding viscos-
ity coefficient either diverges or vanishes at early/late
times, depending on the values of the parameters b
and c . The induced matter has the asymptotic form
p = µ/(3a) for early and late times.
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